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Transversely Anisotropic Curved Optical
Fibers: Variational Analysis of a
Nonstandard Eigenproblem

MARKKU I. OKSANEN anxp ISMO V. LINDELL, SENIOR MEMBER, IEEE:

Abstract — A new variational functional is introduced for the analysis of
curved open and closed waveguides. The theory is based on the variational
principle for nonstandard eigenvalue problems, recently applied for straight
anisotropic fibers. The present method is valid for arbitrary waveguide
cross section and arbitrary radius of curvature for closed waveguides, but
for open guides, the radius should be large enough because the method
predicts the real part of the propagation constant, not the imaginary part,
which gives the attenuation in curved open structures. The dielectric
medium can be homogeneous or nonhomogeneous with transverse and/or
longitudinal anisotropy. As an example of the method, curved isotropic and
anisotropic single-mode fibers with two different kinds of anisotropy
models are studied. The analysis includes field distributions, changes in the
dispersion curves due to reformed geometry, and birefringence characteris-
tics in curved anisotropic fibers.

1. INTRODUCTION

HE BENDING of an optical fiber or an open dielec-

tric waveguide has been proved to cause radiation
loss, change of the real part of the propagation constant
[1], [2}, and birefringence, studied particularly in the sin-
gle-mode optical fibers [3]. The state of the polarization
and the field distribution are also modified by the curva-
ture [4], [5]. The loss can be divided into two parts: the
pure bending loss due to the uniform curvature and the
transition loss related to the mode conversion at the begin-
ning of a bend [6]. The attenuation is proportional to
ya/R exp(— CR,), with C depending on the propagation
parameters [1], [7], whereas the phase correction has a
(a/R,)?* dependence for waveguides of symmetrical cross
section [1]. R, refers to the radius of the bend and a to
the characteristic dimension of the waveguide, e.g. the
radius of the core in the optical fiber. The bending-induced
birefringence is a stress effect [3] which depends on the
outer radius d of the waveguide according to (d/R,)%
Under the bending the outer portion of the fiber cross
section is in tension, which, then, presses laterally on the
inner portion, which is in compression [8]. This stress
modifies the refractive index of the fiber material in a very
complicated way [9] and thus generates birefringence.
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However, there has also been an attempt to analyze the
birefringence purely from the geometrical origin [10]. Field
deformation and the polarization state in a curved slab
waveguide [1], [11], in a rectangular waveguide [11], [12],
and in a curved round fiber {4], [5], [13] have been consid-
ered. One important result is that in a fiber the polariza-
tion states of all modes except the HE;, modes changes
due to fiber axis curvature [4], [13].

A great deal of effort has been expended on various
analytical and numerical methods for the open curved
waveguides. The following review introduces some of these
studies in the literature. Most of the methods, e.g. [1],
stand on the assumption of a large radius of curvature and
thus make use of perturbational technique. An approxi- .
mate eigenvalue equation for a slab waveguide has been
derived [11]. Other methods for dielectric planar and rect-
angular waveguides include perturbational analysis [14],
[15] and the straight waveguide approximation [2], [16].
Spectral expansion techniques [14, {17]-[20] as well as
beam propagation methods {21], {22] can be applied to
general open waveguides. A bent open waveguide can be
considered a radiating antenna [23], [24] or a straight
waveguide with a modified index of refraction through a
conformal transformation [12], {26], [27]. An exact numeri-
cal analysis in the toroidal coordinate system has also been
introduced [28]. Expansions of the slab waveguide theory
to include the optical fiber have been carried out [29}], {30].
Geometrical optics [31] and analytical loss formulas of the
fiber, such as [32], are also available in the literature. One
group of reports applies coupled-mode theory to estimate
mode conversion in a bent waveguide [8], {9], [33], [34].
The variational technique has received scant attention
among the various methods dealing with curved wave-
guides. There seems to be only one study based on this
technique [35]. The purpose of this paper is to introduce a
new variational method applicable to curved open and
closed waveguides. The dielectric medium of the wave-
guide can be inhomogeneous and anisotropic.

Wave propagation in a waveguide can be governed by
the following abstract equation [36]:

L(N)f=0 (1)
where L(A) and A stand for the operator and the eigen-
value parameter of the problem, respectively. The problem
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Fig. 1. A uniformly bent anisotropic waveguide and the related coordi-

nate systems.

is called nonstandard if L(A) is a nonlinear function of A;
otherwise it is called standard. Boundary conditions asso-
ciated with closed waveguides or dielectric boundaries can
be hidden in the formula (1) with a suitable choice of the
field f or they can be taken into account by an additional
equation. Equation (1) can be solved by a variational
method, provided that the inner product

(f,L(A)f)=0 (2)

exists. If the operator L is self-adjoint with respect to this
inner product, (2) possesses stationary roots for A, as was
proved in [37]. For the eigenvalue A one can take any
possible geometrical or physical parameter involved in the
problem. Stationary roots can also be obtained for a given
new parameter which has been derived from the old ones.

In Section II, the formulation of a curved waveguide in
terms of the longitudinal fields is seen to lead to a non-
standard eigenproblem (1). With a definition of a proper
inner product (2), a stationary functional is derived. In
Section III this functional is shown to be a generalization
of the former functional for the straight waveguide [36]. In
Section 1V, the present theory is applied to a bent, weakly
guiding step-index fiber. For the trial fields, asymptotic
fields derived under the weakly guiding assumption and
for large radius of curvatures are used. In Section V, a
curved anisotropic fiber with two different kinds of

2 -2
€, + 8¢, cosa+ de, sin’a

[‘k(P)] =

0

anisotropy models is analyzed. Section VI contains the
conclusions of this paper.

II. THEORY

We consider a bent anisotropic waveguide with a radius
of curvature R, in the global cylindrical coordinate system
O, R, ¢, Z), Fig. 1. The guiding direction is along the axis
of the waveguide, which is the s axis of the local toroidal
coordinate system (0, p, 8, 5) or (0, x, y, s). The two coor-
dinate systems are related by the following equations:

R=R,+pcosd x=pcosf (3)
Z=psinf=y (4)
¢=—s/R,. )

In each coordinate system, the unit vector in the i direc-

(8¢, — 8¢, )sinacos a

tion is denoted by u,. The field components in the two
coordinate systems are related by
Ex=E E,=E, E,=—E,

X

(6)

E =E,cosf — E,sin  E,=E,sinf+ E,cos8. (7)
We assume a field formulation E(R, Z)exp(— jv¢) or
E(p, #)exp(+ jBs) with time dependence exp(jw?) omit-
ted. Curl operators in the local (/) and global (g) coordi-
nate systems are related to each other by

(VXA);=(vxA4),+Au,/R

®)

where subscripts g and / stand for the transverse differen-
tial operator obtained by setting d/d¢ (g) or d/ds (I)
equal to zero in the two coordinate systems, respectively.
The gradient operator is invariant with respect to the
coordinate system: (Vf),=(Vf), For the partial de-
rivatives we have d/dR =cos8d/dp—sinfd/pdf and
3/9Z =cos83/pd8@ +sinbd /dp.

The waveguide is modeled by a symmetric dielectric
dyadic

(%2)

where e(p) =€ (p)u,u, +¢,(p)u, u, is a two-dimensional
dyadic in the transverse plane xy with a position vector p
and orthogonal vectors u,, u,, in that plane. The dielectric
medium will be assumed lossless. In open guides the bend
generates compressional strain, which changes permittiv-
ity. For an optical fiber these fractional increases in those
directions, x and y, which contribute to the propagation
characteristics of the waveguide have been estimated to be
of the order of 0.0015(d/R)% and 0.018(d/R)% [34],
where d is the outer diameter of the fiber. To add these
additional terms Jdex, ey to the formula (9a) results in the
following permittivity matrix:

Ek(p) = E(P)+ ‘¢(p)”¢"¢

(Sey—8ex)sinacosa 0

€, +0¢ cos’a+ 8¢ sina 0 (9b)

0 €4
which is still symmetric. « is the angle between w, and u,
vectors.

As in [36], we derive equations for the longitudinal
fields. We start by writing the guided fields in the global
coordinate system as E(R, Z)exp(— jvo) = (e(R, Z)+
e(R, Z)u,)exp(— jre¢) and H(R, Z)exp(— jre) =
(h(R,Z)+ h(R, Z)u,)exp(— jre) and then insert them
in Maxwell’s equations. After some algebra we are left
with the following equations

(10)
(11)
(12)
(13)

V Xe+ jophu,=0
V X h— jowe,eu, =0
V(eR)Xu¢+jve><u¢+jwp.Rh=0

V(hR)Xu¢+jvhXu¢—ije-e=0.
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Here u, is the axial unit vector, whence for the transverse
fields we have u, e =0 and uy, h=0. The curl operator
denotes a transverse differential operator. From (12) and
(13) we eliminate the transversal field vectors e and h:

e=— jk;>[vv(Re)/R*+ wpv (Rh)Xu,/R|  (14)
h= ju,Xk;* [— we-V (Re)/R +vuy, X V(Rh)/Rz].
‘ (15)

If =

Wi,V X [k;z-e-v(eR) X u¢/R] — We e — VUV X [(kc_2 % u¢u¢)-V(Rh)/R2]

Next we assume the boundary of the waveguide to be a
perfect conductor, and assume the fields to obey the
corresponding boundary conditions. This assumption sim-
plifies the derivation of the functional, but causes a small
error for the propagation parameters when the functional
is applied to the open waveguides. This will be discussed
later.

The operator L operates on the pair of scalar functions
(e, h) according to

(23)

YU,V X [k;2-v(Re)/R*]| — wph + wpu, v X [k;z-v(hR) X u¢/R]

Here k2 is the inverse of the two-dimensional dyadic
k:=w?ue—(»/R)’E (16)

and E is the two-dimensional unit dyadic: E=1—uu,.
The inverse dyadic can be defined as [36]

k2= (kf i u¢u¢)/spm(kf). (17)

The definition of the double cross product here is as
follows: (ab) i(cd) =(aXe)bXd) and spm( ) is the
two-dimensional determinant function (sum of principal
minors of the three-dimensional dyadic) defined by
spmA=A f(A: I/2. Inserting (16) into (17) and using the
above definition for spm( ) gives us the inverse dyadic

(18)

-2 _ 12 -2
kc - kcv uu, + kcw uu,

where the components are

kC_I.2= (wzpei—(v/R)2)_1, (19)
The equations for the longitudinal fields can now be
written by substituting (14) and (15) into (10) and (11).

After rearranging terms and using vector analysis, we
obtain

i=v,w.

V X {uy X k; %[~ wev (eR)/R+vu, X V(Rh)/R?] }
—wegeu, =0 (20)
v x {k;>[rw(eR)/R?+ wpv (hR) X u,/R] }

~ wphu,= 0. (21)

These equations form the basis for the present theory. In
order to apply the variational method, we have to define a
proper inner product (2) and the operator L(A) in (1)
which is self-adjoint with respect to that inner product.
These requirements can be satisfied by the following defi-
nitions. The unknown fields are longitudinal fields (e, &),
which we denote here by f as in (1) and (2), and define the
following inner product (-, -):

o) = [(Ceum)- () as. @

To verify that the above definitions lead to a self-adjoint
formulation, we form the inner product according to (22)

(fio L) == o [ {eseres + phihy } dS
+ w,u./{(V(th) X u,/R)
k7% (v(hR)Xu,/R)} dS
+ wf{((elR)X u,/R)
k;*e(v(e;R)Xu,/R)} dS
+V/{V(h1R)/R-(u¢><kc_2)

v (e,R)/R*+v(h,R)/R?

(u,xk;2)-v(e;R)/R} dS=0 (24)

- where the divergence terms, reduced to line integrals at the

boundary of the waveguide, do not contribute because of
the assumed requirement for the fields. To be self-adjoint,
(24) should be symmetric in 1 and 2. The first term is
clearly symmetric and so are the second and third terms,
provided that the dyadic € is symmetric, as was assumed in
(92) and (9b). The last terms are not symmetric; instead
they form a symmetric pair. As a conclusion, L is self-
adjoint and we can apply the functional (2) written for this
special problem in (24).

The operator L, defined in (23) contains the dyadic k72
which is a complicated function of all the physical parame-
ters involved in the problem. Bearing this in mind, there is
no hope of solving the functional (24) explicitly for any of
the parameters. This is evidently true also for any possible
geometrical parameters, which can be included in the
permittivity dyadic e. Thus the eigenvalue equation Lf =0
is of a nonstandard type [37]. To overcome difficulties
involved in this kind of problem we proceed analogously
to [36] and define new parameters from the old ones and
try to solve the functional in terms of these. In fact,
forming a two-dimensional dyadic as

M=o’k;?*/R?
= (R%e¢, - y_z)—luuuv +(R%e,—v7?) “uu, (25)
where we have defined a new parameter y as

Yy=w/v (26)
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we can express the functional (24) in a compact form for the parameter w:

/{V(Re)-M-e-V(Re)+(u¢X V(RR))-Mp-(u,x v (Rh))—2u, X V(Rh)-M-v(Re)/(Ry)} dS

W=

(27)

[{ese?+nn?} ds

where the integration extends over the waveguide cross
section. Equation (27) is a stationary functional for w?.
The above derivation could have been carried out in terms
of the transversal fields, whence the functional would have
been of the standard form in both w? and B2 However,
the operator L would then be non-self-adjoint with respect
to the symmetric inner product applied here and the
proper solution would also require the adjoint problem to
be taken into account, as was noted in [38] for the case of
the straight corrugated waveguide.

The functional (27) is exact for the closed curved wave-
guides, and can handle an arbitrary radius of curvature.
The only requirements for the fields are continuity every-
where and ideal conductor conditions for the fields at the
waveguide boundary. The dielectric tensor can be arbitrary
provided that it is symmetric. With these comments the
above equation is the most general functional for closed
bent waveguides and, to the knowledge of the authors, has
not been introduced before. For the isotropic waveguide,
the functional takes on the simplified form

J(Re=v7) (v (Re))’+ w(v (RH)) =20,V (RR) X v (Re) /(Ry) ) d

larger than the imaginary part because here the depen-
dence is of the order (a/R,)* [11.

1I1. TESTING THE FUNCTIONAL: THE RADIUS OF
CURVATURE — 0

As the radius of curvature R in (3) goes to infinity, the
torodial coordinate system straightens to the cylindrical
one with coordinates p, @, and s. Then the following
transformations hold:

v/R—=>v/Ry— B,
Ry=Rw/v—> Rw/v=w/By=0,

(29)
(30)

M- R%(“ev—(p/wRO)z)_luvuv
+R(2)(,u.ew—(v/wR0)2)*luwuw
= R%{(p.ev~ vp_z)"1u0u0+ (,uew— vp‘z)wluwuw}

= RN (31)

(28)

f(ee2 +ph?)dS

When the waveguide is open, such as in the optical fiber,
the functional can be used only as an approximation. This
comes from the different boundary conditions. If the open
guide is bent, it becomes radiative, and the fields at

W=

where v, refers to the phase velocity of the field and NV is
a two-dimensional dyadic.

Inserting (29)—(31) into (27) and taking the limit as
R — 0 gives us

[e o]
j(; {ve-N-e-ve+(u;x vh) -N-p(u,x vh)—2(u, x Vh)-N-ve/v,}dS

fow {ege? +pn?} ds

infinity are nonzero. Then the line integrals must be added
in (24), and the functional includes additional terms. How-
ever, if we assume the radius of curvature to be sufficiently
large, so that the attenuvation is very small due to the
exponential decay [1], [7], the functional (27) can be ap-
plied to estimate the change of the real part of the propa-
gation constant due to the bending. This part is essentially

2

(32)

This is identical with the functional for the straight open
waveguide [35]. The trial fields are now exponentially
decaying as p — oo. Unfortunately, the functional in [36] is
not written correctly. The coefficient in the last term in the
functional should read —2 /v, and not —2.

The same limiting process can be performed for the
isotropic guide, whence we obtain

fow(ue - vp‘z)_l(e(Ve)2+ p(vh) —2u, vhx Ve/vp) ds

W=

/°° (ce?+ph?) ds
0

(33)
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which again is identical with that derived in [36] for the
straight isotropic waveguide.

IV. THE BeNT IsoTROPIC STEP-INDEX FIBER

As a first example we consider.a weakly guiding isotropic
step-index optical fiber bent by a radius of R, (Fig. 1).
Here we treat the fiber purely from the geometrical point
of view. This means that small changes in dielectric prop-
erties of the fiber due to the bending are ignored. Also, the
linear birefringence resulting from this modified permittiv-
ity is not taken into account. From the optical waveguide
theory we adopt the usual notations for the normalized
frequency V, normalized propagation constant b, and pa-
rameter A, the normalized dielectric constant difference
between the core and the cladding of the fiber:

V=ajkl-k3=k,a/A
B2—k2 BZ_k2
==’ (35)
k2—k2 e —e¢
A= 1 _ 2 _ 1A, 2
k; €

(34)

(36)

Here, 1 stands for the medium in the core and 2 for that in
the cladding. The radius of the core is denoted by a. The
propagation constant f is related to the azimuthal index »
and the radius R, according to 8=»/R,, which we ex-
pand as a power series:

Br=PB2+ B (a/Ro)*+ - (37)

where B, denotes the propagation constant of the straight
fiber and a = Bia®/4. In the weakly guiding fiber we have
a=V?a/4A. The term proportional to (1/R,) is missing
in the expansion. This has been noted in many asymptotic
studies of the curved waveguide when the waveguide pos-
sesses a symmetric structure with certain symmetry proper-
ties of the mode fields, e.g. [1] and [39]. This holds as well
_for closed waveguides {40} and for symmetric dielectric
slab waveguides [1]. The expansion is valid only for large
radius of curvature. If the radius becomes small, the con-
vergence is very poor, and the propagation constant has a
R5?? dependence [41].
The dielectric function can be written from (36) as

“e(p) =¢,(1+AP(p)) (38)

where P(p) is the pulse function for the step-index fiber:
P(p)=1forp<a,and =0 for p> a.

Field deformation in a curved step-index fiber has been
solved by a numerical method using Fourier—Bessel series
expansions [5]. Analytical equations for the transversal
fields have been derived by applying a first-order perturba-
tion theory [4]. In [13] the theory was extended to include
radially inhomogeneous fibers and longitudinal fields.
Studies based on a Gaussian function approximation for
the fields have been published [42], {43]. Field deformation
can cause a significant contribution to the radiation loss of
the fiber, as was noted in [32]. Here we derive longitudinal
fields in the curved fiber starting from (20) and (21), which

we take for the isotropic waveguide. The resulting field
equations are similar to those in [13].

After rearranging terms in (20) we are left with an
equation for the longitudinal field in the curved wave-
guide:

k2 2

e 2y v
Ve gt ket S /07 a0 (Re)/OR =0
(39)

where k2=k%—(BR,/R)? and » = BR,. The correspond-
ing equation for the magnetic field can be obtained by
changing e to # and ¢ to —p and vice versa. Equation
(39) is exact and contains no approximations. To solve it
we apply a perturbational method where the solution can
be sought as a power series in R, assuming

e=e0+e1a/Ro+é2(a/RO)2+ (40)
By inserting (37) and (40) into (39) and equating powers of

‘R, we obtain a set of differential equations for the field e.

The zero-order equation reads
Vieo+ (k2 —B3)eg=0 (41)
where v, denotes the transverse Laplace operator and
k?=k2(1+ AP). The first-order equation is

vie, +(k*—B2)e = ] dey /IR

8
a’ ( k*— B2
8k?
* 3(1.2 _ 2
Bowea (k - By )
and e=¢,/1+ PA. In the weakly guiding waveguide we
have approximately B, = k.

By solving (41) we have, for the lowest order HE;
mode,

8pcosf
ohy/dZ — % (42)

_ [ J(up/a) /i (u)cos (8 — 6,) forp<a
0"\ Ky(wp/a)/Ki(w)cos (8 — 6,) forp>a.
(43)

J and K denote the Bessel and modified Hankel functions,
respectively. 8, is the polarization angle: 6, =0° and §, =
90° correspond to the mode polarized in the x and the y
direction, respectively. # and w are the normalized param-
eters, defined as u?=(k?— B})a?% w?=(B¢—k3)a% In
terms of the normalized frequency and propagation con-
stants we have u =11~ b, and w=V\b,. The normal-
ized parameter b, is the solution of the eigenvalue equa-
tion at the limit A— 0: w/(u)/Jy(u) =wK(w)/Ky(w)
[44].

If we denote the radial dependence of the zero-order
solution e, by #(p), the corresponding magnetic field is

ho=Ht(p)sin(8—6,) (44)
where H is the magnetic field coefficient, which can be
approximated by H = /e, /p for the HE;; mode under the
weakly guiding assumption [44]. The same value for H can

also be obtained by optimizing the functional (33) with
respect to this parameter, as was demonstrated in [36].
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The first-order fields are solutions of (42). They are, with the assumption By =k,

{(8 +(p/a)2u‘1)J0 +2(,o/a)J1u’2}/Jl(u)COSBO

+ {(8 +(p/a)zu"l)JO—28(a/p)J1u‘1}/Jl(u)cos(20 —6,)
{(o +(p/a)2w’1)K0—2(p/a)K1w_2}/K1(w)cos b,
+ {(o +(p/a)2w_1)K0+20(a/p)K1w*1}/Kl(w)cos(20 —-4,)

e, =

The error in the field equations due to the above assump-
tion is at most of the order A. The arguments up /a and
wp/a of the special functions in the denominators are
omitted. 8 and o are constants derived from the boundary
conditions: § = — K,(w)/uK(w); o = Jo(u)/wly(u).
Analogously to (44), we write e, = f(p)cos b, +
g(p)cos(26 — 6,). This gives us the magnetic field hy:

hy=H(— f(p)sinf, + g(p)sin (26~ 6))-

To combine the field classification we write, for the HE,,,
mode,

e=1(p)cost+(a/Ro)(f(p)+ g(p)cos28)
h=H(t(p)sinf+(a/Ry)g(p)sin28)

(46)

(47)
and for the HE,; , mode,
e=t(p)sinf+(a/Ry)g(p)sin28

h=—H(t(p)cosf+(a/Ry)(f(p)+ g(p)cos28)).
In the weakly guiding limit we have a= 83a’/4 =~ V4 /4A.

The following relations hold between the mode fields:
e’=h"/H

hY/H=—e* (48)

where the subscripts x and y denote the HE,;, and HE,,,
modes, respectively.

The dispersion relation in the curved fiber can now be
calculated from the stationary functional (28), which we
express in terms of the normalized parameters V, b, and A.
The parameter b is a function of the propagation constant
B, so we write

b=by+b' (/R )+ - =by+0b. (49)

Here 0b stands for the change of the normalized parame-
ter and is approximated by the second term &'(Va /4AR )2
of the asymptotic series. The first-order correction is miss-
ing due to the expansion (37). In the weakly guiding limit

forp<a
(45)

forp > a.

A — 0, the functional reads, in the local coordinate system,

o (e ve = iu, x v\’ dpdf
fo (P —by) F(P, by)

'/:O (exe?+ph*)pdpdb

vie

F(P,by) =1+(RyA) "2pcosf/(P — b,)

—8bV2/(P —b,). (50)
The functional is independent of the wave polarization in
the weakly guiding limit for the HE,; mode. This is seen
by inserting field relations (47) into (50), in which case the
integrands remain unchanged. This means that the bend
induces the same change in the propagation constants of
the orthogonal polarized waves of the HE,; mode. This
has been observed previously by many authors applying a
variety of methods, e.g. [18).

The unknown parameter 8b is hidden in the functional
in a complicated way. To solve this, we can either apply an
asymptotic method or make use of some numerical algo-
rithm. In the latter, we start from a definite (V, by) point
in the dispersion curve, insert the field expressions, and
seek a proper value for 8b so that (50) is satisfied. In the
former method we equate coefficients of equal powers of
(a/R;) in (50). The lowest order equation is

t 2
t'+ —) pdp
P

0 a2
b T
fow o dp

Here, the prime denotes the first derivative of the function
with respect to p. This is the functional equation for the
straight fiber derived in [36] and gives the corresponding
cigenvalue equation by using the longitudinal fields (43).
The first-order equation is lacking, which is evident from
the asymptotic nature of the propagation constant. The
second-order equation gives an expression for the change
of the propagation constant 8b:

V2=

(51)

6 (7 . (2@ M(p) , = aM(p) o 2M,(p) |
. Vfo Ml(P)PdP-VfO deP+V A mp P*f mp dp L2 X
B M,(p) (4AR0) (52)
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Fig. 2. Change of the normalized propagation constant §b (52) multi-
plied by the coefficient N=(4AR/a)? in the weakly guiding limit
A—0. ’

where M, = f2+g% M,=2f, My=4f(t'+1t/p)p, and
M, = (t'+t/p)* The functions 7, f, and g are defined in
(47). The prime denotes the first derivative with respect to
the argument. The evident advantage of the asymptotic
formulation over the iterative method is that (52) does not
contain singularities in the integrand, in contrast to the
functional (50).

The accuracy of the field expansion (40) depends on the
parameter (a/R,). If this parameter is small enough,
indicating a large normalized radius of curvature Ry A /a,
the first terms in the series are sufficient. On the other
hand, with a small radius of curvature more terms are
required or, alternatively, the differential equation (39)
must be solved directly without any perturbational ap-
proach. In that case, the normalized propagation constant
is strongly modified by the bend.

Results by using the zero-order and first-order fields
(43), (44), (45), and (46) are depicted in Figs. 2 and 3. Fig.
2 shows a general curve for 8b calculated from (52). This
curve is identical with that given in [45], which has been
obtained by applying a transversal field formulation and
asymptotic method. In Fig. 3 the asymptotic curve is
compared with that from the functional (50). The curves
go very close to each other, except at large V' value region,
where the functional (50) predicts somewhat higher &b
values. For a more realistic fiber with a nonzero A parame-
ter we have to apply (28) directly. The asymptotic ap-
proach in this case is useless because the equation would
then be much more complicated than (52). In Table I are
summarized 8b results at two different A values, namely
A =0.010 and 0.004, and at RA /a = 20, 50, and 80. As it
is seen, 8b values are slightly affected by the normalized
difference of the dielectric constants.

Some of the values in the table are marked with an
asterisk to indicate that here (50) has more than one
solution. The origin of these additional solutions is proba-
bly related to the strong growth of the 8b curves in the
small V' value region and also to the asymptotic approxi-

0
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Q
Q
RoA /o= 50.0
N
il
Q
© LS 1 A T T )
1 2 3 4 E) 6
\

Fig. 3. Change of the normalized propagation constant §b at RyA/
a =50 in the weakly guiding limit A — 0. The solid line refers to the
asymptotic solution (52) and the dash—dot line to the functional (50).

TABLE 1
VALUES OF CHANGE OF THE NORMALIZED PROPAGATION CONSTANT 85
IN THE SINGLE-MODE OPTICAL FIBER AT DIFFERENT VALUES OF THE
NORMALIZED RADIUS OF CURVATURE
AND AT A = 0.010, A = 0.040

8b

Ry = = Rod/a = 20 Rpd/a = 50 Ryt/a = 80
3 3 4
v bg 8bx10 &bx10 &bx10
4 = 0,010 0.004 | 0.010 0.004 0.010 0.004 0.010 0.004
5.395 .8601 .8593 | 7.46 7.37 1.48  1.47 5.93 5.86
4.295 L7963 .7961 | 5.92  5.86 1.04  1.04 4,14 4.10
3.195 .6800 .6806 | 4.69 4.64 6.78 0.78 3.06 3.02
2.095 -4439  ,4448 | 6.56 7.08 1.0z 1.01 3.98 3.94
1.545 (2479 .2465 | 32.0% 21.7% 3.34 3.10% 12.6 12.5

by values for the straight fiber have been calculated from the functional
(33).

mation of the field, which for a small radius of curvature
should indicate more terms than are used here in the
calculations.

V. APPLICATION TO ANISOTROPIC FIBERS

In this section we apply the functional (27) for two
different kinds of anisotropic fibers. In the first example
we have a fiber with anisotropic core and isotropic
cladding, while in the second example both the core and
the cladding are anisotropic. One of the fiber anisotropy
axes is taken to be in the plane of the bend. The anisotropy
is assumed to originate in the mechanical stress, thus
producing linear birefringence for which the modes are
linearly polarized. The lowest HE,; mode is then approxi-
mated by (47) with the fields (43), (44) and (45), (46). This
approximation can be made provided that the anisotropy
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is minor, as assumed in the subsequent examples. It is
worth noting that this assumption is not inherent in the
functional (27), which can treat all kinds of transversely
and symmetrically anisotropic waveguides.

A. Circular Step-Index Fiber with Anisotropic Core and
Isotropic Cladding ‘

In this waveguide both the core and the cladding are
homogeneous but the dielectric function of the former is
transversely anisotropic. More exactly, the dielectric dyadic
takes on the form '

e=e,[E+AP(p)k+(1+AP(p))uu,]  (53)
where P is the pulse function (38) and « is the two-dimen-
sional dyadic '

=A.uu, +Ayuyuy

(54)

with constants 4, and 4,. The normalized parameters V’
and b must be defined as

V=kya/A =(B*-k2)a>/vV?  (59)
because the parameter k; is not unique in the present
fiber.

To apply the general functional (27) we start from the
dyadic M, which now can be written as

w'k?
-2

2 2 —i

=7:’2~:/—2{KP+(1——(—A—)— ((R,/R) b)) }

w?a?

The dyadic D, is the inverse of the two-dimensional dyadic,
which by taking the limit A — 0 can be expressed in the
following formula:

uxux
D 1
! R%(PAx—bO)F(PA)ubO)
. uwu,
R3(PA,—b,)F(PA4,,b,)

D
R}

(57)

where the definition (17) for the inverse dyadic has been
applied. The function F is defined in (50). Substituting
(57), (56), and (53) into (27) gives the functional for the
parameter V%

, f( €, Ve—.\/ﬁusxvh)-D-(\/;Ve—‘/ﬁusxvh) ds

| f(52e2+ ,uhz) das

(58)

in the limit A — 0. The integration extends over the entire
transverse plane. This equation is closely related to (50) for

Fig. 4. The effect of the transversal anisotropy, parameter A, on the
change of the normalized propagation constant N3b, where N =
(4AR/a)? in the weakly guiding limit A ~ 0.

the isotropic fiber. To see this we take a fiber possessing
only one anisotropic parameter, say 4, and 4,=1. Now,
for the HE;, mode polarized in the y d1rectlon the vector
(Ve ve— f u X vh)is y directed and when mult1p11ed by
the dyadic D gives the functional for the isotropic fiber,
(50). Thus, for this mode the fiber behaves as an isotropic
one. On the contrary, for the HE,, mode the above vector
is directed along the x axis and the functional differs from
that of the isotropic fiber by the anisotropic parameter A,.
The functional is now ,

b= Axf(\/zrV, P) +8f({A, v, P)/A,

if the isotropic relation is denoted by
b=7(V,P)+8f(V,P) (60)

and the latter terms in (59) and (60) stand for the change
of the propagation constant due to the bending. The first
terms relate the anisotropic straight fiber to the corre-
sponding isotropic straight fiber. It has been shown that
this transformation relation for the straight fibers can be
applied for a large variety of inhomogeneous fibers [46].

Equation (59) is valid for all possible parameter values
A_. If the anisotropy is in the y direction, the dispersion
relation for the HE,;, mode is described by (59) with A4,
replaced by 4. The reason for this symmetry comes from
the symmetncal diadic D (57) The effect of the anisotropy
parameter A4 is depicted in Fig. 4.

The dlfference between the propagation constants of the
orthogonal polarized waves of the same mode is called the
birefringence, defined as

_zﬁxa—ﬁya_ be+1/A—/by+1/A A ,
~“Ba+Ba " \b+1/A+ b, +1/A =5 (8:=8)).
(61)

The last expression is Va11d for A— 0 if b, and b, are not
very small. If the fiber has only a minor amsotropy, the
propagation constants of the two polarizations do not

(59)
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1.0 ZB;/AQ

Fig. 5. Normalized birefringence 2B, /Aq for the step-index fiber with
anisotropic core and isotropic cladding in the limit of weak guidance
and perturbational anisotropy [36].

Fig. 6. Effect of the bending on the normalized birefringence 2NSB /A
of the step-index optical fiber with anisotropic core and isotropic
cladding in the limit of weak gmdance and perturbational anisotropy.
The coefficient N = (4ARy/a)?.

differ by much. In that case the birefringence can be
calculated by using the fields derived for the isotropic
fiber. If the anisotropy is perturbational in one direction,
say x, the birefringence can be expressed in the following
form for 4, =1+g;

Aq 1 A
B= > by(V)+ EVb()(V) + —2—(be —8b)=B,+ 4B
(62)

where the asymptotic formula of the propagation constant
(49) has been adopted. The prime denotes the derivative of
b, with respect to V. The first part of the equation refers to
the straight fiber, whereas the latter part is an additional
term due to the bend. This can be calculated asymptoti-
cally from (52) according to the transformation (59). If a
more exact analysis is required, the dispersion curve must
be evaluated using the functional (50) in (59) and the
birefringence from (61). In Fig. 5 the birefringence of the
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Fig. 7. - Dispersion relations of a straight step-index fiber with an-
isotropic core and cladding for various A and anisotropy parameter
values.

stralght fiber has been plotted by using the analytic d1sper~
sion equation [47]

bo(V) =1-{(1+v2) /(14 4+ 7). (63)

The influence of the bending on the birefringence is
depicted in Fig. 6 for various anisotropy parameter values,

B. Circular Step-Index Fiber with Anisotropic Core and
Cladding

As a second example we consider a bent step-index
anisotropic fiber with the dyadic function

e=e,(1+AP(p))(k+u,u,). (64)

Inserting k from (54) into (64) and separating orthogonal

dielectric constants in the transverse plane give
€, =6,(1+AP(p))A, €y=e2(1+’AP(p))Ay (65)

where P(p) equals the pulse function.

The analysis of this fiber cannot be transformed from
that of the isotropic one; hence we must work with the
general functional (27). Here we again assume the
anisotropy to be small enough that the fields of the HE,,
mode can be approximated by (47) with (43) and (45). This

' restriction is not related to the functional (27), which was

derived for arbitrary anisotropic relations.

To start with this example we consider first a straight
anisotropic fiber, applying the functional (32) with the
fields (43) and (44). The dispersion curves at various A and
anisotropy parameter values are depicted in Fig. 7. The
curves, which have been calculated for the HE,;, mode
with the x-directed anisotropy, are identical for the HE;, -
mode and the y-directed anisotropy. The results are within
the reading accuracy as are those given in [36]. This
confirms our previous calculations based on application of
elementary trial functions.

To proceed, we bend the fiber by the normalized radius
RyA /a =50 and apply the functional (27), yielding Figs. 8
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Fig. 8. Dispersion relation of HE;;, mode in the curved fiber with
anisotropic core and cladding for various A and x-directed (in the
plane of the bend) anisotropy parameter values.
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Fig. 9. Same as Fig. 8 for HE,;,, mode and y-directed anisotropy.

and 9 for HE;;, and HE;;, modes, with the direction of
anisotropy along the x and the y axis, respectively. The
symmetry existing in the straight fiber now disappears.
This is clearly observed in Figs. 10 and 11 where the
change of the dispersion curve due to the bending is shown
at both polarizations. The numbers refer to the corre-
sponding curves in Figs. 8 and 9. The solid lines denoting
the isotropic curves are the same for both polarizations,
whereas the effect of the bend is more pronounced in the
HE,;, mode.

The effect of the anisotropy, and thus birefringence, is
studied in Figs. 12, 13, and 14. The birefringence of the
straight fiber (Fig. 12) is almost the same, excluding curve
no. 5, as that in the curved fiber at the HE,;, mode (Fig.
13). This indicates that here the x-directed anisotropy is
strong enough to prevent additional changes due to the

5.
4
3.
2.
1
X
RoA /o= 50.0
a
© v 1 M T T 1 T 1
2 3 4 5 6

Fig. 10. Change of the normalized propagation constant due to the
bend in the optical fiber with x-directed anisotropy in the core and in
the cladding. The numbers refer to the corresponding curves in Fig. 8.
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Same as Fig. 10 for y-directed anisofropy, The numbers refer

Fig. 11.
to the curves given in Fig. 9.

bend. The curves of the HE,;, mode differ from those in
Figs. 12 and 13 and thus are lnﬂuenced by the bend.

VL

A stationary functional for anisotropic curved wave-
guides has been derived. The functional is general in that it
includes longitudinal and/or transversal anisotropy and
homogeneous or nonhomogeneous media. It can be ap-
plied to closed waveguides with an arbitrary radius of
curvature and to open waveguides with a slight radius of
curvature. As an example of the method a curved step-index
round optical fiber has been studied. First, the differential
equation for the longitudinal electric field has been solved,
giving field equations for the straight fiber and the lowest
order corrections to the real part of the propagation con-
stant due to the bending. These solutions are then taken
for the trial fields for isotropic and anisotropic fibers. The

CONCLUSIONS
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Fig. 12. Normalized birefringence of a straight step-index optical fiber
with anisotropic core and cladding. The numbers refer to the curves in
Fig. 7.
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Fig. 13. Same as Fig, 12 for curved anisotropic fiber and for the HE,;,
mode. The numbers refer to the curves in Fig, 8.

functional for the isotropic step-index fiber has been de-
rived under the weakly guiding assumption. It has been
calculated asymptotically and iteratively, where in the for-
mer singularities in the integrand can be avoided. Results
from two different methods are seen to be very close to
each other. It is also noted that the change in the disper-
sion curve due to the bend is the same for orthogonal
polarized HE,; modes. Application of the theory to a fiber
possessing perturbational anisotropy in the core related to
the isotropic cladding was scen to lead to transformation
equations for the dispersion characteristics and analytical
expressions for the birefringence. In the fiber with both the
core and the cladding anisotropic, dispersion curves and
birefringence were seen to be dependent on the direction
of anisotropy, whereas in the former anisotropic fiber,
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Fig. 14. Sme as Fig. 13 for HE,;, mode. The numbers refer to the
curves in Fig. 9.

these characteristics were invariant with respect to the
direction of anisotropy in the weakly guiding limit.
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