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Abstract —A new variational functional is introduced for the analysis of

curved open and closed waveguides. The theory is based on the variational

principle for nonstandard eigenvalue problems, recently applied for straight

anisotropic fibers. The present method is valid for arbitrary waveguide

cross section and’ arbhwy radins of cnrvatnre for closed waveguides, but

for open guides, the radius should be large enough because the method

predicts the reaf part of the propagation constant, not the imaginary part,

which gives the attenuation in curved open structures. The dielectric

medum can be homogeneous or nonhomogeneous with transverse and/or

longitudinal anisotropy. As CR example of the method, curved isotropic and

anisotropic single-mode fibers with two different kinds of anisotropy

models are studkd. The anafysis includes field distributions, changes in the

dispersion curves dne to reformed geometry, and birefringence characteris-

tics in curved anisutropic fibers.

I. INTRODUCTION

T HE BENDING of an optical fiber or an open dielec-

tric waveguide has been proved to cause radiation

loss, change of the real part of the propagation constant

[1], [2], and birefringence, studied particularly in the sin-

gle-mode optical fibers [3]. The state of the polarization

and the field distribution are also modified by the curva-

ture [4], [5]. The loss can be divided into two parts: the

pure bending loss due to the uniform curvature and the

transition loss related to the mode conversion at the begin-

ning of a bend [6]. The attenuation is proportional to

i=exp(- CRO), with C depending on the propagation
parameters [1], [7], whereas the phase correction has a

(a/RO)2 dependence for waveguides of symmetrical cross

section [1]. ROrefers to the radius of the bend and a to

the characteristic dimension of the waveguide, e.g. the

radius of the core in the optical fiber. The bending-induced

birefringence is a stress effect [3] which depends on the

outer radius d of the waveguide according to (d/R ~)2.
Under the bending the outer portion of the fiber cross

section is in tension, which, then, presses laterally on the

inner portion, which is in compression [8]. This stress

modifies thq refractive index of the fiber material in a very

complicated way [9] and thus generates birefringence.
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However, there has also been an attempt to analyze the

birefringence purely from the geometrical origin [10]. Field

deformation and the polarization state in a curved slab

waveguide [1], [11], in a rectangular waveguide [11], [12],

and in a curved round fiber [4], [5], [13] have been consid-

ered. One important result is that in a fiber the polariza-

tion states of all modes except the HEIP modes changes

due to fiber axis curvature [4], [13].

A great deal of effort has been expended on various

analytical and numerical methods for the open curved

waveguides. The following review introduces some of these

studies in the literature. Most of the methods, e.g. [1],

stand on the assumption of a large radius of curvature and

thus make use of perturbational technique. An approxi-

mate eigenvalue equation for a slab waveguide has been

derived [11]. Other methods for dielectric planar and rect-

angular waveguides include perturbational analysis [14],

[15] and the straight waveguide approximation [2], [16].

Spectral expansion techniques [14, [17]–[20] as well as

beam propagation methods [21], [22] can be applied to

general open waveguides. A bent open waveguide can be

considered a radiating antenna [23], [24] or a straight

waveguide with a modified index of refraction through a

conformal transformation [12], [26], [27]. An exact numeri-

cal analysis in the toroidal coordinate system has also been

introduced [28]. Expansions of the slab waveguide theory

to include the optical fiber have been carried out [29], [30].

Geometrical optics [31] and analytical loss formulas of the

fiber, such as [32], are also available in the literature. One

group of reports applies coupled-mode theory to estimate

mode conversion in a bent waveguide [8], [9], [33], [34].

The variational technique has received scant attention

among the various methods dealing with curved wave-

guides. There seems to be only one study based on this

technique [35]. The purpose of this paper is to introduce a

new variational method applicable to curved open and

closed waveguides. The dielectric medium of the wave-

guide can be inhomogeneous and anisotropic.

Wave propagation in a waveguide can be governed by

the following abstract equation [36]:

L(A)f=o (1)

where L(A) and A stand for the operator and the eigen-

value parameter of the problem, respectively. The problem
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Fig. 1. A uniformly bent anisotropic waveguide and the related coordi-
nate systems.

is called nonstandard if L(A) is a nonlinear function of A;

otherwise it is called standard. Boundary conditions asso-

ciated with closed waveguides or dielectric boundaries can

be hidden in the formula (1) with a suitable choice of the

field for they can be taken into account by an additional

equation. Equation (1) can be solved by a variational

method, provided that the inner product

(f, L(A)f)=O (2)

exists. If the operator L is self-adjoint with respect to this

inner product, (2) possesses stationary roots for A, as was

proved in [37]. For the eigenvalue A one can take any

possible geometrical or physical parameter involved in the

problem. Stationary roots can also be obtained for a given

new parameter which has been derived from the old ones.

In Section II, the formulation of a curved waveguide in

terms of the longitudinal fields is seen to lead to a non-

standard eigenproblem (l). With a definition of a proper

inner product (2), a stationary functional is derived. In

Section 111 this functional is shown to be a generalization

of the former functional for the straight waveguide [36]. In

Section IV, the present theory is applied to a bent, weakly

guiding step-index fiber. For the trial fields, asymptotic

fields derived under the weakly guiding assumption and

for large radius of curvatures are used. In Section V, a

curved anisotropic fiber with two different kinds of

tion is denoted by u,. The field components in the two

coordinate systems are related by

E~ = EX Ez = Ey E@=– E, (6)

Ex=EPcos O–EOsinO Ey= EPsin6 + EOCOS6. (7)

We assume a field formulation E(R, Z) exp ( – jv+) or

E(p, 0) exp ( + j~s) with time dependence exp ( jat) omit-

ted. Curl operators in the local (1) and global (g) coordi-

nate systems are related to each other by

(vx~)g= (vx A), +A#f,/R (8)

where subscripts g and 1 stand for the transverse differen-

tial operator obtained by setting d/d@ (g) or d/ds (1)

equal to zero in the two coordinate systems, respectively.

The gradient operator is invariant with respect to the

coordinate system: (vf )~ = (vf )[. For the partial de-

rivatives we have d/8R = cos M/8p – sin t?a/p 89 and

aiaz = cos ealpae + sint3il/8p.

The waveguide is modeled by a symmetric dielectric

dyadic

Ck(p) =6( P)+ f+(P) rL#,rJ+ (9a)

where e(p) = CO(P)UOUO+ Cw(p)uwuwis a two-dimensional

dyadic in the transverse plane xy with a position vector p

and orthogonal vectors UO,u~ in that plane. The dielectric

medium will be assumed Iossless. In open guides the bend

generates compressional strain, which changes permittiv-

ity. For an optical fiber these fractional increases in those

directions, x and y, which contribute to the propagation

characteristics of the waveguide have been estimated to be

of the order of 0.0015 (d/RO)46 and 0.018( d/RO)4C [34],

where d is the outer diameter of the fiber. To add these

additional terms &x, 8CY to the formula (9a) results in the

following permittivity matrix:

1
CO+ 8cXcos2a+ 8cYsin2a (8tY-8tX)sinacosa O

[~~(P)] = (8eY-8fX)sinacosa cW+8tXcos2a+8fYsin2a O

1

(9b)

o 0 ~+

anisotropy models is analyzed. Section VI contains the

conclusions of this paper.

II. THEORY

We consider a bent anisotropic waveguide with a radius

of curvature R ~ in the global cylindrical coordinate system

(O, R,+, Z), Fig. 1. The guiding direction is along the axis

of the waveguide, which is the s axis of the local toroidal

coordinate system (O’, p, 0,s ) or (O’, x, y,s ). The two coor-

which is still symmetric. a is the angle between Uxand UO
vectors.

As in [36], we derive equations for the longitudinal

fields. We start by writing the guided fields in the global

coordinate system as E(R, Z)exp( – jvr$) = (e(R, 2)+

e(R, Z) U@)exp (– jv$) and II(R, Z) exp (– jv~) =

(h(R, Z)+ A(R, Z)u+)exp(– jv@) and then insert them

in Maxwell’s equations. After some algebra we are left

with the following equations

dinate systems are related by the following equations:
VXe+juphu+=O (lo)

R= RO+pcos(9 X=pcos$ (3)

Z=psinfl=y (4)
v X h – jti~~eu+= O (11)

@=–s/RO. (5) v(eR)Xu@ +jve Xu@+jqWr=O (12)

In each coordinate system, the unit vector in the i direc- V(hR)Xu~+ jvh Xu$–jtiRc. e =0. (13)
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Here u+ is the axial unit vector, whence for the transverse

fields we have u+” e = O and u+. h = O. The curl operator

denotes a transverse differential operator. From (12) and

(13) we eliminate the transversal field vectors e and h:

~ = – jk:2. [W(Re)/R2+ w.W(Rh)x u+/R] (14)

h = juGXk:2. [– ut.V(Re)/R+ Pu@XV(Rh)/R2].

(15)

Next we assume the boundary of the waveguide to be a

perfect conductor, and assume the fields to obey the

corresponding boundary conditions. This assumption sim-

plifies the derivation of the functional, but causes a small

error for the propagation parameters when the functional

is applied to the open waveguides. This will be discussed

later.

The operator L operates on the pair of scalar functions

(e, h) according to

[

[W4”V X k;2” C“v(eR) x U@/R] – %# – ~U4-V x
Lf = [(

k;2&u@)v(Rh)/R2] 1 (23)

VU+*Vx [k;2”v(Re)/R2] – aph + UP+*V x [kJ2”v(hR) x U@/R]

Here k;’ is the inverse of the two-dimensional dyadic

k:= 02W-–(V/R)2E (16)

and E is the two-dimensional unit dyadic: E = 1 – U+U+.

The inverse dyadic can be defined as [36]

k;2=(k:;u@u,)/sPm(k?). (17)

The definition of the double cross product here is as

follows: (ah) ~(cd)= (a x c)(b x d) and spm( ) is the

two-dimensional determinant function (sum of principal

minors of the three-dimensional dyadic) defined by

spm A = A ~ A: 1/2. Inserting (16) into (17) and using the

above definition for spm ( ) gives us the inverse dyadic

k:2 = k;U2uOuV+ k;:uwuw (18)

where the components are

k;2 = (ti’pci - (v/’R)2)-1, i=v, w. (19)

The equations for the longitudinal fields can now be

written by substituting (14) and (15) into (10) and (11).

After rearranging terms and using vector analysis, we

obtain

vx{uOxk;2”[ – m“v(eR)/R+ ~u4Xv(Rh)/R2] )

– ac+eu+= O (20)

v x {k;2”[w(eR)/R2 +q.W(hR)Xu, /R])

—qihu+ = 0: (21)

These equations form the basis for the present theory. In

order to apply the variational method, we have to define a

proper inner product (2) and the operator L(A) in (1)

which is self-adjoint with respect to that inner product.

These requirements can be satisfied by the following defi-

nitions. The unknown fields are longitudinal fields (e, h),

which we denote here by f as in (1) and (2), and define the

following inner product (”, ”):

()(f17f2) =J%l? hi)” ;: ds.
(22)

To verify that the above definitions lead to a self-adjoint

formulation, we form the inner product according to (22)

(fl, Lfz) = - @~{~@ele2+ph1h2} dS

J
+tip {(v(hlR)xuo/R)

“k:2”(v(h2R)xu./R) }ds

J
+U (((elR)XUJR)

.k;2. ~.(v(e2R)Xu@/R)) dS

J+? {v(hlR)/R-(u@xk;2 )

.v(e2R)/R2 +v(h2R)/R2

“( ‘2).v(elR)/R)dS=0U+ X k, (24)

where the divergence terms, reduced to line integrals at the

boundary of the waveguide, do not contribute because of

the assumed requirement for the fields. To be self-adjoint,

(24) should be symmetric in 1 and 2. The first term is

clearly symmetric and so are the second and third terms,

provided that the dyadic e is symmetric, as was assumed in

(9a) and (9b). The last terms are not symmetric; instead
they form a symmetric pair. As a conclusion, L is self-

adjoint and we can apply the functional (2) written for this

special problem in (24).

The operator L, defined in (23) contains the dyadic k;2,
which is a complicated function of all the physical parame-

ters involved in the problem. Bearing this in mind, there is

no hope of solving the functional (24) explicitly for any of

the parameters. This is evidently true also for any possible

geometrical parameters, which can be included in the

perrnittivity dyadic c. Thus the eigenvalue equation Lf = O
is of a nonstandard type [37]. To overcome difficulties

involved in this kind of problem we proceed analogously

to [36] and define new parameters from the old ones and

try to solve the functional in terms of these. In fact,

forming a two-dimensional dyadic as

~= ~2k;2/R2

= (R2pE0- y-2) -1UvUO+(R2~,w-y -2)-’UwUw (25)

where we have defined a new parameter y as

y = U/v (26)
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we can express the functional (24) in a compact form for the parameter u*:

~2=J{ ( )
V Re -M"e"V(Re) +(u+XV(RA)) .Mp. (u@ XV(Rh)) -2uOXV(Rh) .M.v(Re)/(Ry)} dS

J{

(27)

cie2+ph2) dS

where the integration extends over the waveguide cross

section. Equation (27) is a stationary functional for ti2.

The above derivation could have been carried out in terms

of the transversal fields, whence the functional would have

been of the standard form in both ti2 and /32. However,

the operator L would then be non-self-adjoint with respect

to the symmetric inner product applied here and the

proper solution would also require the adjoint problem to

be taken into account, as was noted in [38] for the case of

the straight corrugated waveguide.

The functional (27) is exact for the closed curved wave-

guides, and can handle an arbitrary radius of curvature.

The only requirements for the fields are continuity every-

where and ideal conductor conditions for the fields at the

waveguide boundary. The dielectric tensor can be arbitrary

provided that it is symmetric. With these comments the

above equation is the most general functional for closed

bent waveguides and, to the knowledge of the authors, has

not been introduced before. For the isotropic waveguide,

the functional takes on the simplified form

larger than the imaginary part because here the depen-

dence is of the order (a/RO)2 [1].

III. TESTING THE FUNCTIONAL: THE RADIUS OF

CURVATUREI -+ co

As the radius of curvature ROin (3) goes to infinity, the

torodial coordinate system straightens to the cylindrical

one with coordinates p, 8, and s. Then the following

transformations hold:

v/R ~ v/R ~ ~ &

Ry = Ra/v ~ ROa/v= u/~O= Up

ikf+ R:(p~O– (v/tiRO)2) ‘lzfOuo

+ R~(pcw– (@~o)2) ‘l%U.

{
=R: (pcO–oP-2) -luOuO+(p~W–

= R:N

(29)

(30)

)–2 –1

VP
Uwuw)

(31)

~(R2cp- y-2) -1(t(V(Re))2+ p(V(Rh))2-2u@.V( Rh)XV(Re)/(Ry))dS
~2 =

J(

(28)

ce2+~h2)dS

When the waveguide is open, such as in the optical fiber, where VP refers to the phase velocity of the field and N is

the functional can be used only as an approximation. This a two-dimensional dyadic.

comes from the different boundary conditions. If the open Inserting (29)–(31) into (27) and taking the limit as

guide is bent, it becomes radiative, and the fields at R ~ @ gives us

j{ w Ve.N”cVe+ (u,XVh). N.p(u,X Vh)-2(u~x vh). N.Ve/oP} dS
~2= o

J{

(32)
w c@e2+ph2} dS

o

infinity are nonzero. Then the line integrals must be added This is identical with the functional for the straight open

in (24), and the functional includes additional terms. How- waveguide [35]. The trial fields are now exponentially

ever, if we assume the radius of curvature to be sufficiently decaying as p ~ co. Unfortunately, the functional in [36] is

large, so that the attenuation is very small due to the not written correctly. The coefficient in the last term in the

exponential decay [1], [7], the functional (27) can be ap- functional should read – 2/oP and not – 2.

plied to estimate the change of the real part of the propa- The same limiting process can be performed for the

gation constant due to the bending. This part is essentially isotropic guide, whence we obtain

/( m p, - $2)-’(c(ve)2+p( vh)2-2u,.Vlz X ve/.p) dS
o

02 =

/(

(33)
m ce2+ph2) dS

o
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which again is identical with that dixived in [36] for the

straight isotropic waveguide.

IV. THE BENT ISOTROPIC STEP-INDEX FIBER

As a first example we consider.a weakly guiding isotropic

step-index optical fiber bent by a radius of R ~ (Fig. 1).

Here we treat the fiber purely from the geometrical point

of view. This means that small changes in dielectric prop-

erties of the fiber due to the bending are ignored. Also, the

linear birefringence resulting from this modified perrnittiv-

ity is not taken into account. From the optical waveguide

theory we adopt the usual notations for the normalized

frequency V, normalized propagation constant b, and pa-

rameter A, the normalized dielectric constant difference

between the core and the cladding of the fiber:

V= a~~= kzafi (34)

b= b2–k; B2–k; z—.
k;–k; V2 a

(35)

(36)

Here, 1 stands for the medium in the core and 2 for that in

the cladding. The radius of the core is denoted by a. The

propagation constant @ is related to the azimuthal index v

and the radius R ~ according to /3 = v/R ~, which we ex-

pand as .a power series:

/?2=@:+/Y2(a/RO)2+ . . . (37)

where /30 denotes the propagation constant of the straight

fiber and a = ~~a 3/4. In the weakly guiding fiber we have

a = V2a/4A. The term proportional to (l/RO) is missing

in the expansion. This has been noted in many asymptotic

studies of the curved waveguide when the waveguide pos-

sesses a symmetric structure with certain symmetry proper-

ties of the mode fields, e.g. [1] and [39]. This holds as well

for closed waveguides [40] and for symmetric dielectric

slab waveguides [1]. The expansion is valid only for large

radius of curvature. If the radius becomes small, the con-

vergence is very poor, and the propagation constant has a

R ~ 2/3 dependence [41].

The dielectric function can be written from (36) as

C(p)= c2(l+AP[p)) (38)

where P(p) is the pulse function for the step-index fiber:

P(p) =1 for p,< a, and = O for P> a.

Field deformation in a curved step-index fiber has been

solved by a numerical method using Fourier–Bessel series

expansions [5]. Analytical equations for the transversal

fields have been derived by applying a first-order perturba-

tion theory [4]. In [13] the theory was extended to include
radially inhomogeneous fibers and longitudinal fields.

Studies based on a Gaussi~ function approximation for

the fields have been published [42], [43]. Field deformation

can cause a significant contribution to the radiation loss of

the fiber, as was noted in [32]. Here we derive longitudinal

fields in the curved fiber starting from (20) and (21), which

we take for the isotropic waveguide. The resulting field

equations are similar to those in [13].

After rearranging terms in (20) we are left with an

equation for the longitudinal field in the curved wave-

guide:

(39)

where k: = k 2 – ( ~RO /R )2 and ,V= ~R~.The correspond-

ing equation for the magnetic field can be obtained by

changing e to h and ( to – p and vice versa. Equation

(39) is exact and contairis no approximations. To solve it

we apply a perturbational method where the solution can

be sought as a power series in RO,assuming

e = eO+ ela/RO+ e2(a/RO)2+ . . . . (40)

By inserting (37) and (40) into (39) and equating powers of

ROweobtain a set of differential equations for the field e.

The zero-order equation reads

V~eO+(k2–13~)eO=0 (41)

where V: denotes the transverse Laplace operator and

k2 = k~(l + AP). The first-order equation is

8
v}el+(k=–~~)el= 8e0/i9R

a3(k2– Dj)

8k2 8p COS8
— eO (42)

+ ~Ouca3(k2-~~) ‘ho’dz - a3

and c = ~24=. In the weakly guiding waveguide we

have approximately J30= k.

By solving (41) we have, for the lowest order HEII

mode,

{

J1(up/a)/.ll(u) cos(O – O.) forp<a

‘0= K1(wp/a)/K1(w) cos(O – r90) forp>a.

(43)

J and K denote the Bessel and modified Hankel functions,

respectively. (30is the polarization angle: 60 = 0° and 00 =

90° correspond to the mode polarized in the x and the y

direction, respectively. u and w are the normalized param-

eters, defined as U2 = (kf – /l~)a2; W2 = (fl~ – k$)a2. In

terms of the normalized frequency and propagation con-

stants we have u = V~~ and w = VW. The normal-

ized parameter b. is the solution of the eigenvalue equa-

tion at the limit A ~ O: uJl(u)/.lo(u) = wKl(w)/Ko(w)

[44].

If we denote the radial dependence of the zero-order

solution e. by t(p), the corresponding magnetic field is

hO=Ht(p)sin(d– Oo) (44)

where H is the magnetic field coefficient, which can be

approximated by H = m for the HEII mode under the

weakly guiding assumption [44]. The same value for H can

also be obtained by optimizing the functional (33) with

respect to this parameter, as was demonstrated in [36].



56 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO, 1, JANUARY 1989

The first-order fields are solutions of (42). They are, with the assumption & = k,

[

((8+( P/a)2u-’).TO+2( p/a) J1u-z)/J1(u)cosO0

+((8+(p/a)’u-l) Jo–28(a/p)J1u-1 }/J,(u) cos(2e– 60)
el =

((o+(p/a)2w-’)K0 -2(p/a)Klw-2)/K1( w)cos60

forp<a
(45)

+((u+(p/a)’w-l) Ko+20(a/p)K1w-@1 (w)cos(2e-60) forp>a.

The error in the field equations due to the above assump-

tion is at most of the order A. The arguments up/a and

wp/a of the special functions in the denominators are

omitted. ~ and u are constants derived from the boundary

conditions: 8 = – IC2(w)/uKo(w); u = .12(u)/wJo(u).

Analogously to (44), we write el = ~(p) cos 00 +

g(P) Cos (Z6 – 8.). This gives us the magnetic field hl:

hl=H(–~(p) sinOO+g(p) sin(20 -60)). (46)

To combine the field classification we write, for the HEIIX

mode,

e=t(p)cosO +(a\Ro)(f(p) +g(p)COS20)

h= H(t(p)sin6’ +(a/Ro)g(p)sin26) (47)

and for the HE llP mode,

e=t(p)sinfl +(a/RO)g(p)sin2d

lz=-H(t(p) cos8+(a/Ro)(j(p) +g(p)cos2e)).

In the weakly guiding limit we have a = /3~a 3/4 = Vga/4A.
The following relations hold between the mode fields:

eY=h.~/H hY/H=–ex (48)

where the subscripts x and y denote the HEIIX and HEIIY

modes, respectively.

The dispersion relation in the curved fiber can now be

calculated from the stationary functional (28), which we

express in terms of the normalized parameters V, b, and A.

The parameter b is a function of the propagation constant

/3, so we write

b= bO+b’(a/ROV)2+ . . . =bO+(3b. (49)

Here db stands for the change of the normalized parame-

ter and is approximated by the second term b’[ Va/4ARO)2
of the asymptotic series. The first-order correction is miss-

ing due to the expansion (37). In the weakly guiding limit

8b =

A + O, the functional reads, in the local coordinate system,

J
ma2(~ve –fiu~ x vh)’pdpdd

172= 0 (~ - bo)~(~, bo)
‘m

J( c2e2i-ph2)pdpd0
o

$’(P, bO)=l+(RoA)-12p cos(j/(P-bo)

– 8bV2/(P - be). (50)

The functional is independent of the wave polarization in

the weakly guiding limit for the HEII mode. This is seen

by inserting field relations (47) into (50), in which case the

integrands remain unchanged. This means that the bend

induces the same change in the propagation constants of

the orthogonal polarized waves of the HEII mode. This

has been observed previously by many authors applying a

variety of methods, e.g. [18].

The unknown parameter ~b is hidden in the functional

in a complicated way. To solve this, we can either apply an

asymptotic method or make use of some numerical algo-

rithm. In the latter, we start from a definite (V, bo) point

in the dispersion curve, insert the field expressions, and

seek a proper value for tlb so that (50) is satisfied. In the

former method we equate coefficients of equal powers of

(a/Ro) in (50). The lowest order equation is

a2

(1

2

J

03

t’+~ pdp
v’=

O (P–bo) p

(m t2pdp “
(51)

Jo

Here, the prime denotes the first derivative of the function

with respect to p. This is the functional equation for the

straight fiber derived in [36] and gives the corresponding

eigenvalue equation by using the longitudinal fields (43).

The first-order equation is lacking, which is evident from

the asymptotic nature of the propagation constant. The

second-order equation gives an expression for the change

of the propagation constant 8b:

V’~mM1(p)pdp – v’1 ~~ _ bo)
~ a~3(p) cc 2~’(P)

‘a M2(p)pdp+Vz~ ~P_bO)’Pdp–~ ~P_bo)3P3@ a 2

a’
/

co M4(p)
() 4AR0

O (P–bo)
~pdp

(52)
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Fig. 2. Change of the normalized propagation constant bb (52) multi-
plied by the coefficient N = (4AR0 /a)z in the weakly guiding limit
A-+0,

where Ml= f2 + g 2, ~z = 2f’> ~,= 4f’(t’ + t/P)P> and
Md = (t’ + t/p)2. The functions t,f, and g are defined in

(47). The prime denotes the first derivative with respect to

the argument. The eyident advantage of the asymptotic

formulation over the iterative method is that (52) does not

contain singularities in the integrand, in contrast to the

functional (50).

The accuracy of the field expansion (40) depends on the

parameter (a/RO). If this parameter is small enough,

indicating a large normalized radius of curvature R ~A /a,

the first terms in the series are sufficient. On the other

hand, with a small radius of curvature more terms are

required or, alternatively, the differential equation (39)

must be solved directly without any perturbational ap-

proach. In that case, the normalized propagation constant

is strongly modified by the bend.

Results by using the zero-order and first-order fields

(43), (44), (45), and (46) are depicted in Figs. 2 and 3. Fig.

2 shows a general curve for 8b calculated from (52). This

curve is identical with that given in [45], which has been

obtained by applying a transversal field formulation and

asymptotic method. In Fig. 3 the asymptotic curve is

compared with that from the functional (50). The curves

go very close to each other, except at large V value region,

where the functional (50) predicts somewhat higher 8b
values. For a more realistic fiber with a nonzero A parame-

ter we have to apply (28) directly. The asymptotic ap-

proach in this case is useless because the equation would

then be much more complicated than (52). In Table I are

summarized ~b results at two different A values, namely

A = 0.010 and 0.004, and at RA/a = 20, 50, and 80. As it

is seen, W values are slightly affected by the normalized
difference of the dielectric constants.

Some of the values in the table are marked with an

asterisk to indicate that here (50) has more than one

solution. The origin of these additional solutions is proba-

bly related to the strong growth of the 8b curves in the

small V value region and also to the asymptotic approxi-

RoA/a= 50.0

/“
./.

Fig. 3. Change of the normalized propagation constant i3b at ROA/
a = 50 in the weakly guiding limit A + O. The solid line refers to the
asymptotic solution (52) and the dash–dot line to the functional (50).

TABLE I
VALUES OF CHANGE OF THE NORMALIZED PROPAGATION CONSTANT 8b

IN THE SINGLE,MODE OPTICAL FIBER AT DIFFERENT VALUES OF THE

NORMALIZED RADIUS OF CURVATURE

AND AT A = 0.010, A = 0.040

6b

i

Ro=-

1
,RoA/a=20 I RoA/a . 50 IRob/a = 80

v b 6bx103 6bx103 bbx104

A = 0.010 0.004 0.010 0.004 0.010 0.004 0.010 0.004

5.395 .8601 .8593 7.46 7.37 1.48 1.47 5.93 5.66

4.295 .7963 .7961 5.92 5.86 1.04 11.04 4.14 4.10

3.195 .6800 .6806 4.69 4.64 0.78 0.78 3.06 3.02

2.095 .4439 .4448 6.56 7.08 1.02 1.01 3.98 3.94

1.545 .2479 .2465 32.0* 21.7* 3.34 3.1O* 12.6 12.5

b. values for the straight fiber have been calculated from the functional
(33).

mation of the field, which for a small radius of curvature

should indicate more terms than are used here in the

calculations.

V. APPLICATION TO ANLSOTROPIC FIBERS

In this section we apply the functional (27) for two

different kinds of anisotropic fibers. In the first example

we have a fiber with anisotropic core and isotropic

cladding, while in the second example both the core and

the cladding are anisotropic. One of the fiber- anisotropy

axes is taken to be in the plane of the bend. The anisotropy

is assumed to originate in the. mechanical stress, thus

producing linear bh-efringence for which the modes are

linearly polarized. The lowest HEII mode is then approxi-

mated by (47) with the fields (43), (44) and (45), (46). This

approximation can be made provided that the anisotropy
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is minor, as assumed in the subsequent examples. It is

worth noting that this assumption is not inherent in the

functional (27), which can treat all kinds of transversely

and symmetrically anisotropic waveguides.

A. Circular Step-Index Fiber with Anisotropic Core and

Isotropic Cladding

In this waveguide both the core and the cladding are

homogeneous but the dielectric function of the former is

transversely anisotropic. More exactly, the dielectric dyadic

takes on the form

(53)C= Cz[E+AP(P)~ +(l+AP(P))~,~,]

where P is the pulse function (38) and ICis the two-dimen-

sional dyadic

x = AXUXUX+ Ayuyuy (54)

with constants AX and AY. The normalized parameters V

and b must be defined as

V= kza~ b= (~2–k~)a2/V2 (55)

because the parameter kl is not unique in the present

fiber.

To apply the general functional (27) we start from the

dyadic AI, which now can be written as

ti2k;2
M=—

R2

~2a 2

H

l–(RO/R)2
== KP+

A ‘(( Ro/@2b E ‘1)) }

~2a 2

= FD1”

(56)

The dyadic D1 is the inverse of the two-dimensional dyadic,

which by taking the limit A * O can be expressed in the

following formula:

Uxux

‘1= R;(PAX–bO)f’(PA., bo)

Uyuy

+R~(PAY-bo)F(PAy, bo)

(57)

where the definition (17) for the inverse dyadic has been

applied. The function F is defined in (50). Substituting

(57), (56), and (53) into (27) gives the functional for the

parameter V2:

-. f(&Ve-fiu.xvh)D( &ve-~u.xvh) dS

/(%e2+@2)ds
(58)

in the limit A ~ O. The integration extends over the entire

transverse plane. This equation is closely related to (50) for

~~
0 1 2 4 5 6

:

Fig. 4. The effect of the transversal anisotropy, parameter A, on the
change of the normalized propagation constant Nab, where N =

(4A R0/a)2 in the weakfy guiding limit A -+ O.

the isotropic fiber. To see this we take a fiber possessing

only one anisotropic parameter, say AX and A ~ =1. Now,

for the HEIIY mode polarized in the y direction, the vector

(&ve– fiu, X Vh) is y directed and when multiplied by

the dyadic D gives the functional for the isotropic fiber,

(50). Thus, for this mode the fiber behaves as an isotropic

one. On the contrary, for the HEIIX mode the above vector

is directed along the x axis and the functional differs from

that of the isotropic fiber by the anisotropic parameter AX.

The functional is now

b = AJ(KV, P) + 8f(~V, P)/AX (59)

if the isotropic relation is denoted by

b= f(V, P)+8f(V, P) (60)

and the latter terms in (59) and (60) stand for the change

of the propagation constant due to the bending. The first

terms relate the anisotropic straight fiber to the corre-

sponding isotropic straight fiber. It has been shown that

this transformation relation for the straight fibers can be

applied for a large variety of inhomogeneous fibers [46].

Equation (59) is valid for all possible parameter values

AX. If the anisotropy is in the y direction, the dispersi~n

relation for the HEIIY mode is described by (59) with AX

replaced by AY. The reason for this symmetry comes from

the symmetrical diadic D (57). The effect of the anisotropy

parameter AX is depicted in Fig. 4.

The difference between the propagation constants of the

orthogonal polarized waves of the same mode is called the

birefringence, defined as

~=23Xa-~ya {bX + l/A - {b, + l/A L

&a+ /lya = 2 -WV
=z(bX-bY).

(61)

The last expression is valid for A ~ O if bX and bY are not

very small. If the fiber has only a minor anisotropy, the

propagation constants of the two polarizations do not
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Fig. 5. Normalized birefringence 2B0/Aq for the step-index fiber with
anisotropic core and isotropic cladding in the limit of weak guidsnce
and perturbational auisotropy [36].
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Fig. 6. Effect of the bending on the normalized birefringence 2N8B/A
of the step-index opticaJ fiber with anisotropic core and isotropic
cladding in the limit of weak guidance and perturbational anisotropy.
The coefficient N= (4A R0/a)2.

differ by much. In that case the birefringence can be

calculated by using the fields derived for the isotropic

fiber. If the anisotropy is perturbational in one direction,

say x, the birefringence can be expressed in the following

form for AX= 1 + q:

Aq
B

( )
= ~ be(V)+; ~;(V) +:( MX-M) =BO+8B

(62)

where the asymptotic formula of the propagation constant

(49) has been adopted. The prime denotes the derivative of

b. with respect to V. The first part of the equation refers to
the straight fiber, whereas the latter part is an additional

term due to the bend. This cart be calculated asymptoti-

cally from (52) according to the transformation (59). If a

more exact analysis is required, the dispersion curve must

be evaluated using the functional (50) in (59) and the

birefringence from (61). In Fig. 5 the birefringence of the

al~

m
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n
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Fig. 7. Dispersion relations of a straight step-index fiber with an-
isotropic core and cladding for various A and anisotropy parameter
values.

straight fiber has been plotted by using the analytic disper-

sion equation [47]

bO(V) =1 - {(l+ fi)/(1+ (4+ V4)1’4))2. (63)

The influence of the bending on the birefringence is

depicted in Fig. 6 for various anisotropy parameter values.

B. Circular Step-Index Fiber with Anisotropic Core and

Cladding

As a second example we consider a bent step-index

anisotropic fiber with the dyadic function

c= ~2(l+\AP(p))(tc+ u~u,). (64)

Inserting K from (54) into (64) and separating orthogonal

dielectric constants in the transverse plane give

CX=C2(1+AP(P))A. CY=C2(1+ A~(P))AY (65).

where P(p) equals the pulse function.

The analysis of this fiber cannot be transformed from

that of the isotropic one; hence we must work with the

general functional (27). Here we again assume the

anisotropy to be small enough that the fields of the HE1l

mode can be approximated by (47) with (43) and (45). This

restriction is, not related to the functional (27), which was

derived for arbitrary anisotropic relations.

To start with this example we consider first a straight

anisotropic fiber, applying the functional (32) with the

fields (43) and (44). The dispersion curves at various A and

anisotropy parameter values are depicted in Fig. 7. The

curves, which have been calculated for the HE1lX mode

with the x-directed anisotmpy, are identical for the HE1lY
mode and the y-directed anisotropy. The results are within

the reading accuracy as are those ‘~ven in [36]. This

confirms our previous calculations based on application of

elementary trial functions.

To proceed, we bend the fiber by the normalized radius

RoA/a = 50 and apply the functional (27), yielding Figs. 8
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Fig. 8. Dispersion relation of HEIIX mode in the curved fiber with
anisotropic core and cladding for various A and x-directed (in the
plane of the bend) anisotropy parameter values.

Fig. 9.
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Ax=l.0000

3.A=O.O1O, Ay=l.0000
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Same as Fig. 8 for HEIIY mode and y-directed anisotropy.

and 9 for HE IIX and HE1lY modes, with the direction of
anisotropy along the x and the y axis, respectively. The

symmetry existing in the straight fiber now disappears.

This is clearly observed in Figs. 10 and 11 where the
change of the dispersion curve due to the bending is shown

at both polarizations. The numbers refer to the corre-

sponding curves in Figs. 8 and 9. The solid lines denoting

the isotropic curves are the same for both polarizations,

whereas the effect of the bend is more pronounced in the

HE1lY mode.

The effect of the anisotropy, and thus birefringence, is

studied in Figs. 12, 13, and 14. The birefringence of the

straight fiber (Fig. 12) is almost the same, excluding curve

no. 5, as that in the curved fiber at the HE1lX mode (Fig.

13). This indicates that here the x-directed anisotropy is

strong enough to prevent additional changes due to the

,“-.
,’ ../’ 5.

:
,/’

4.

3.

2.

1.

t RoA/a= 50.0
0
0 I I I 1 I

2 3 4 5 6

v

Fig. 10. Change of the normalized propagation constant due to the
bend in the opticaf fiber with x-directed anisotropy in the core and in
the cladding. The numbers refer to the corresponding curves in Fig. 8.
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Fig. 11. Same as Fig. 10 for y-directed anisotropy. The numbers refer
to the curves given in Fig. 9.

bend. The curves of the HE1lY mode differ from those in

Figs. 12 and 13 and thus are influenced by the bend.

VI. CONCLUSIONS

A stationary functional for anisotropic curved wave-
guides has been derived. The functional is general in that it

includes longitudinal and/or transversal anisotropy and

homogeneous or nonhomogeneous media. It can be ap-

plied to closed waveguides with an arbitrary radius of

curvature and to open waveguides with a slight radius of

curvature. As an example of the method a curved step-index

round optical fiber has been studied. First, the differential

equation for the longitudinal electric field has been solved,

giving field equations for the straight fiber and the lowest
order corrections to the real part of the propagation con-

stant due to the bending. These solutions are then taken

for the trial fields for isotropic and anisotropic fibers. The
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Fig. 12. Normalized birefringence of a straight step-index optical fiber
with anisotropic core and cladding. The numbers refer to the curves in
Fig. 7.
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Fig. 13. Same as Fig. 12 for curved anisotropic fiber and for the HEu,
mode. The numbers refer to the curves in Fig. 8.

functional for the isotropic step-index fiber has been de-

rived under the weakly guiding assumption. It has been

calculated asymptotically and iteratively, where in the for-

mer singularities in the integrand can be avoided. Results

from two different methods are seen to be very close to

each other. It is also noted that the change in the disper-

sion curve due to the bend is the same for orthogonal

polarized HE1l modes. Application of the theory to a fiber

possessing perturbational anisotropy in the core related to

the isotropic cladding was seen to lead to transformation

equations for the dispersion characteristics and analytical

expressions for the birefringence. In the fiber with both the

core and the cladding anisotropic, dispersion curves and

birefringence were seen to be dependent on the direction

of anisotropy, whereas in the former anisotropic fiber,

Fig. 14.
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Same as Fig. 13 for HEII. mode. The numbers refer to the
curves b Fig. 9.

these characteristics were invariant with respect to the

direction of anisotropy in the weakly guiding limit.
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